Embedding Theorems and Area Operators on Bergman Spaces with Doubling Measure
نویسندگان
چکیده
Abstract We establish an embedding theorem for the weighted Bergman spaces induced by a positive Borel measure $$d\omega (y)dx$$ d ω ( y ) x with doubling property $$\omega (0,2t)\le C\omega (0,t)$$ 0 , 2 t ≤ C . The characterization is given in terms of Carleson squares on upper half-plane. As special cases, our result covers standard weights and logarithmic weights. application, we also boundedness area operator.
منابع مشابه
Embedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کاملCompact Operators on Bergman Spaces
We prove that a bounded operator S on La for p > 1 is compact if and only if the Berezin transform of S vanishes on the boundary of the unit disk if S satisfies some integrable conditions. Some estimates about the norm and essential norm of Toeplitz operators with symbols in BT are obtained.
متن کاملOperators on weighted Bergman spaces
Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...
متن کاملembedding measure spaces
for a given measure space $(x,{mathscr b},mu)$ we construct all measure spaces $(y,{mathscr c},lambda)$ in which $(x,{mathscr b},mu)$ is embeddable. the construction is modeled on the ultrafilter construction of the stone--v{c}ech compactification of a completely regular topological space. under certain conditions the construction simplifies. examples are given when this simplification o...
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2021
ISSN: ['1661-8254', '1661-8262']
DOI: https://doi.org/10.1007/s11785-021-01089-4